table of contents
PG_DUMP(1) | PostgreSQL 9.2.24 Documentation | PG_DUMP(1) |
NAME¶
pg_dump - extract a PostgreSQL database into a script file or other archive file
SYNOPSIS¶
pg_dump [connection-option...] [option...] [dbname]
DESCRIPTION¶
pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the database is being used concurrently. pg_dump does not block other users accessing the database (readers or writers).
Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the SQL commands required to reconstruct the database to the state it was in at the time it was saved. To restore from such a script, feed it to psql(1). Script files can be used to reconstruct the database even on other machines and other architectures; with some modifications, even on other SQL database products.
The alternative archive file formats must be used with pg_restore(1) to rebuild the database. They allow pg_restore to be selective about what is restored, or even to reorder the items prior to being restored. The archive file formats are designed to be portable across architectures.
When used with one of the archive file formats and combined with pg_restore, pg_dump provides a flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore can be used to examine the archive and/or select which parts of the database are to be restored. The most flexible output file format is the “custom” format (-Fc). It allows for selection and reordering of all archived items, and is compressed by default.
While running pg_dump, one should examine the output for any warnings (printed on standard error), especially in light of the limitations listed below.
OPTIONS¶
The following command-line options control the content and format of the output.
dbname
-a, --data-only
This option is similar to, but for historical reasons not identical to, specifying --section=data.
-b, --blobs
-c, --clean
This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.
-C, --create
This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.
-E encoding, --encoding=encoding
-f file, --file=file
-F format, --format=format
p, plain
c, custom
d, directory
t, tar
-i, --ignore-version
-n schema, --schema=schema
Note
When -n is specified, pg_dump makes no attempt to dump any other database objects that the selected schema(s) might depend upon. Therefore, there is no guarantee that the results of a specific-schema dump can be successfully restored by themselves into a clean database.
Note
Non-schema objects such as blobs are not dumped when -n is specified. You can add blobs back to the dump with the --blobs switch.
-N schema, --exclude-schema=schema
When both -n and -N are given, the behavior is to dump just the schemas that match at least one -n switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from what is otherwise a normal dump.
-o, --oids
-O, --no-owner
This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.
-R, --no-reconnect
-s, --schema-only
This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to, specifying --section=pre-data --section=post-data.
(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)
To exclude table data for only a subset of tables in the database, see --exclude-table-data.
-S username, --superuser=username
-t table, --table=table
The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped regardless of those switches, and non-table objects will not be dumped.
Note
When -t is specified, pg_dump makes no attempt to dump any other database objects that the selected table(s) might depend upon. Therefore, there is no guarantee that the results of a specific-table dump can be successfully restored by themselves into a clean database.
Note
The behavior of the -t switch is not entirely upward compatible with pre-8.2 PostgreSQL versions. Formerly, writing -t tab would dump all tables named tab, but now it just dumps whichever one is visible in your default search path. To get the old behavior you can write -t '*.tab'. Also, you must write something like -t sch.tab to select a table in a particular schema, rather than the old locution of -n sch -t tab.
-T table, --exclude-table=table
When both -t and -T are given, the behavior is to dump just the tables that match at least one -t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from what is otherwise a normal dump.
-v, --verbose
-V, --version
-x, --no-privileges, --no-acl
-Z 0..9, --compress=0..9
--binary-upgrade
--column-inserts, --attribute-inserts
--disable-dollar-quoting
--disable-triggers
Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should also specify a superuser name with -S, or preferably be careful to start the resulting script as a superuser.
This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.
--exclude-table-data=table
To exclude data for all tables in the database, see --schema-only.
--inserts
--lock-wait-timeout=timeout
--no-security-labels
--no-tablespaces
This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.
--no-unlogged-table-data
--quote-all-identifiers
--section=sectionname
The data section contains actual table data, large-object contents, and sequence values. Post-data items include definitions of indexes, triggers, rules, and constraints other than validated check constraints. Pre-data items include all other data definition items.
--serializable-deferrable
This option is not beneficial for a dump which is intended only for disaster recovery. It could be useful for a dump used to load a copy of the database for reporting or other read-only load sharing while the original database continues to be updated. Without it the dump may reflect a state which is not consistent with any serial execution of the transactions eventually committed. For example, if batch processing techniques are used, a batch may show as closed in the dump without all of the items which are in the batch appearing.
This option will make no difference if there are no read-write transactions active when pg_dump is started. If read-write transactions are active, the start of the dump may be delayed for an indeterminate length of time. Once running, performance with or without the switch is the same.
--use-set-session-authorization
-?, --help
The following command-line options control the database connection parameters.
-h host, --host=host
-p port, --port=port
-U username, --username=username
-w, --no-password
-W, --password
This option is never essential, since pg_dump will automatically prompt for a password if the server demands password authentication. However, pg_dump will waste a connection attempt finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.
--role=rolename
ENVIRONMENT¶
PGDATABASE, PGHOST, PGOPTIONS, PGPORT, PGUSER
This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq (see Section 31.14, “Environment Variables”, in the documentation).
DIAGNOSTICS¶
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you are able to select information from the database using, for example, psql(1). Also, any default connection settings and environment variables used by the libpq front-end library will apply.
The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable, you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.
NOTES¶
If your database cluster has any local additions to the template1 database, be careful to restore the output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions of the added objects. To make an empty database without any local additions, copy from template0 not template1, for example:
CREATE DATABASE foo WITH TEMPLATE template0;
When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands to disable triggers on user tables before inserting the data, and then commands to re-enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs might be left in the wrong state.
The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal performance; see Section 23.1.3, “Updating Planner Statistics”, in the documentation and Section 23.1.6, “The Autovacuum Daemon”, in the documentation for more information. The dump file also does not contain any ALTER DATABASE ... SET commands; these settings are dumped by pg_dumpall(1), along with database users and other installation-wide settings.
Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can be expected to load into PostgreSQL server versions newer than pg_dump's version. pg_dump can also dump from PostgreSQL servers older than its own version. (Currently, servers back to version 7.0 are supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed that pg_dump's output can be loaded into a server of an older major version — not even if the dump was taken from a server of that version. Loading a dump file into an older server may require manual editing of the dump file to remove syntax not understood by the older server. Use of the --quote-all-identifiers option is recommended in cross-version cases, as it can prevent problems arising from varying reserved-word lists in different PostgreSQL versions.
EXAMPLES¶
To dump a database called mydb into a SQL-script file:
$ pg_dump mydb > db.sql
To reload such a script into a (freshly created) database named newdb:
$ psql -d newdb -f db.sql
To dump a database into a custom-format archive file:
$ pg_dump -Fc mydb > db.dump
To dump a database into a directory-format archive:
$ pg_dump -Fd mydb -f dumpdir
To reload an archive file into a (freshly created) database named newdb:
$ pg_restore -d newdb db.dump
To dump a single table named mytab:
$ pg_dump -t mytab mydb > db.sql
To dump all tables whose names start with emp in the detroit schema, except for the table named employee_log:
$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql
To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose names contain the word test:
$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql
The same, using regular expression notation to consolidate the switches:
$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql
To dump all database objects except for tables whose names begin with ts_:
$ pg_dump -T 'ts_*' mydb > db.sql
To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the name; else it will be folded to lower case (see Patterns). But double quotes are special to the shell, so in turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something like
$ pg_dump -t '"MixedCaseName"' mydb > mytab.sql
SEE ALSO¶
2017-11-06 | PostgreSQL 9.2.24 |